Appendix B Compaction Curves

24 Miners Road, Templeton, Christchurch PO Box 16-064, Christchurch 8441 Telephone: +64 3 349 9142 Facsimile: +64 3 349 9143

www.fultonhogan.com 0800 LABORATORY

Report No: MDD:CAN20S-17343

Maximum Dry Density Report

Client:

Toni O'Regan City Care Limited PO Box 7669 Sydenham

Christchurch 8240

Project:

QA Testing - City Care Ltd

The tests reported herein (unless otherwise indicated) have been performed in accordance with the laboratory's scope of accreditation. Samples are tested as received, in natural condition, unless stated otherwise in the comments. This report may only be reproduced in fulf.

relate only to the items / samples that were tested Approved Signatory: Rebecca Royfee (Laboratory Technician) IANZ Accreditation No:200 Date of Issue: 23/10/2020

Sample Details

Sample ID:

CAN20S-17343

Material:

Sand

Site/Sampled From:

CD2 Prestons - Stage 5 East side of S/P Vibrating Hammer Compaction Test

5% Air Voids

Sampling Method:

Specification:

Technician:

Stated to be NZS 4407:2015 2.4.6.5

Laura Cranston

Client Sample ID: 1691/20

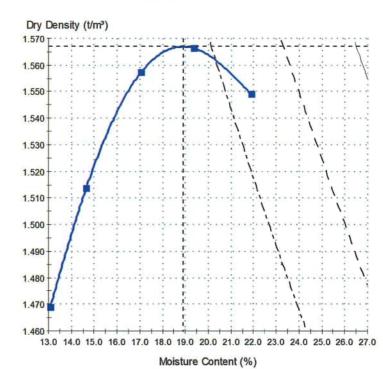
Sample Source:

Miscellaneous Material Source

Date Sampled:

20/10/2020

Sampled By:


Advised - See Comments Date Tested: 22/10/2020

Sampling Endorsed?: No

Dry Density - Moisture Relationship

0% Air Voids

10% Air Voids

Test Results

NZS 4402:1986 Test 4.1.3 - 1986

Maximum Dry Density (t/m3): 1.56

Optimum Moisture (%):

2.68 assumed

Solid Density (t/m3): Fraction Tested Passes (mm): 37.5

Material Removed (%):

Sample History:

Natural

Tested By: Date Tested: Laura Cranston 22/10/2020

Comments

Sampled by A Hadlee

Canterbury Laboratory

24 Miners Road, Templeton, Christchurch PO Box 16-064, Christchurch 8441 Telephone: +64 3 349 9142 Facsimile: +64 3 349 9143

www.fultonhogan.com 0800 LABORATORY

Report No: MDD:CAN20S-01176

Maximum Dry Density Report

Client:

Toni O'Regan City Care Limited PO Box 7669 Sydenham

Christchurch 8240

NZ

Project:

QA Testing - City Care Ltd

The tests reported herein (unless otherwise indicated) have been performed in accordance with the laboratory's scope of accreditation. Samples are tested as received, in natural condition, unless stated otherwise in the comments. This report may only be reproduced in full.

IANZ

Approved Signatory: Max Burford

(Supervisor) IANZ Accreditation No:200

Sample Details

Sample ID:

CAN20S-01176

Material:

Sand

Site/Sampled From:

CDL Prestons Road

Specification:

Vibrating Hammer Compaction Test

Sampling Method:

Not Advised

...chnician:

Atu Rova

Client Sample ID:

0055/20 Sample 3 Miscellaneous Material Source

Sample Source: Date Sampled:

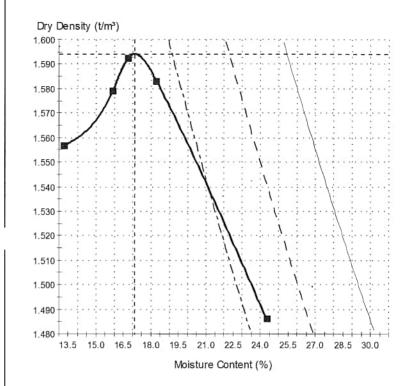
20/01/2020

Sampled By:

Advised - See Comments

Date Tested:

21/01/2020


Sampling Endorsed?: No

Dry Density - Moisture Relationship

0% Air Voids

10% Air Voids

5% Air Voids

Test Results

NZS 4402:1986 Test 4.1.3

Maximum Dry Density (t/m3): 1.60 Optimum Moisture (%): 17

Solid Density (t/m3):

2.68 assumed

Fraction Tested Passes (mm): 37.5 Material Removed (%):

Sample History: Tested By:

Natural Atu Rova

Date Tested:

21/01/2020

Comments

- * Sample 3
- Material sampled by Clive Gould.

Canterbury Laboratory

24 Miners Road, Templeton, Christchurch PO Box 16-064, Christchurch 8441 Telephone: +64 3 349 9142 Facsimile: +64 3 349 9143

www.fultonhogan.com 0800 LABORATORY

Maximum Dry Density Report

Client: Toni O'Regan

City Care Limited PO Box 7669 Sydenham

Christchurch 8240

NZ

Project: QA Testing - City Care Ltd The tests reported herein (unless otherwise indicated) have been performed in accordance with the laboratory's scope of accreditation. Samples are tested as received, in natural condition, unless stated otherwise in the comments. This report may only be reproduced in full.

Report No: MDD:CAN20S-01175

IANZ

Approved Signatory: Max Burford

(Supervisor) IANZ Accreditation No:200 Date of Issue: 22/01/2020

Sample Details

Sample ID:

CAN20S-01175

Material:

Sand

Site/Sampled From:

CDL Prestons Road

Specification:

Vibrating Hammer Compaction Test Not Advised

mpling Method: chnician:

Atu Rova

Client Sample ID:

0054/20 Sample 2

Sample Source:

Miscellaneous Material Source

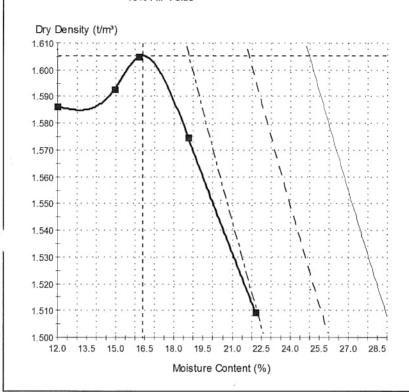
Date Sampled:

20/01/2020

Sampled By:

Advised - See Comments

Date Tested:


21/01/2020

Sampling Endorsed?: No

Dry Density - Moisture Relationship

0% Air Voids 5% Air Voids

10% Air Voids

Test Results

NZS 4402:1986 Test 4.1.3

Maximum Dry Density (t/m3): 1.60 Optimum Moisture (%): 16

Solid Density (t/m3):

2.68 assumed

Fraction Tested Passes (mm): 37.5

Material Removed (%):

Sample History: Tested By:

Natural Atu Rova

Date Tested:

21/01/2020

Comments

- * Sample 2
- * Material sampled by Clive Gould.

Canterbury Laboratory

24 Miners Road, Templeton, Christchurch PO Box 16-064, Christchurch 8441 Telephone: +64 3 349 9142

Facsimile: +64 3 349 9143 www.fultonhogan.com 0800 LABORATORY

Report No: MDD:CAN21S-00814

Issue No: 1

Maximum Dry Density Report

Client:

City Care Limited PO Box 7669 Sydenham

Christchurch 8240

NZ

Project: City Care

The tests reported herein (unless atherwise indicated) have been performed in accordance with the laboratory's scope of accreditation. Samples are tested as received, in natural condition, unless stated otherwise in the comments. This report may only be reproduced in full.

TO LABORATOR HAN STREET

The results in this report relate only to the items / samples that were tested Approved Signatory: Liam Brennan (Laboratory Technician) IANZ Accreditation No:200 Date of Issue: 29/01/2021

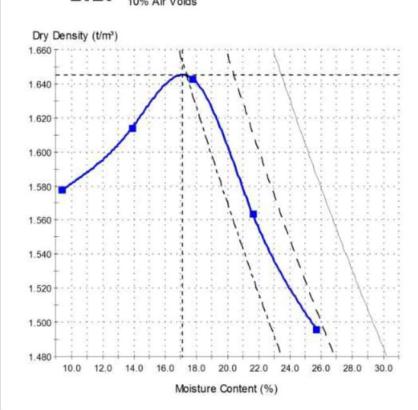
Sample Details

Sample ID: CAN21S-00814 Client Sample ID: Lab Ref: 0095/21

Material: Silty Sand Sample Source: Miscellaneous Material Source

Site/Sampled From: Ex Oakbridge, Eastern BDY Reserve Date Sampled: 27/01/2021

Specification: Vibrating Hammer Compaction Test Sampled By: Advised - See Comments


5% Air Voids

Sampling Method: As Received - Not Accredited Date Tested: 28/01/2021

Technician: Maciej Gaworecki Sampling Endorsed?: No

Dry Density - Moisture Relationship

0% Air Voids — 10% Air Voids

Test Results

NZS 4402:1986 Test 4.1.3 - 1986

Maximum Dry Density (t/m³): 1.64
Optimum Moisture (%): 17

Solid Density (t/m³): 2.68 assumed

Fraction Tested Passes (mm): 37.5

Material Removed (%): 0

Sample History: Natural

Tested By: Maciej Gaworecki

Date Tested: 28/01/2021

Comments

Compaction for test points @ 21.6% & 25.7% ceased prior to 3 minutes due to oversaturation causing ejection of fines from sample. Material sampled by Clive Gould

397 Mcleans Island Road, Harewood P O Box 11-326, Sockburn, Christchurch 8443 Phone: (03) 359-0757

NZS4407:2015 2.4.6.3.2

NZS4402:1986 Test 4.1.3

Test Report

Sample Date:

Sampled By:

Report No:

Report Date:

Laboratory No:

Client:

K.B. Contracting & Quarries Limited

Address:

PO Box 19746, Woolston, Christchurch 8241

Client Ref:

Not advised

Job Location: Material:

Pit Run

Material Source:

McLeans Island

McLeans Island

1# Sampling from stockpiles of well graded aggregate - machine method

Test methods marked with a hash are not accredited.

08/12/2017

Pete Haward

C17/3810

257833

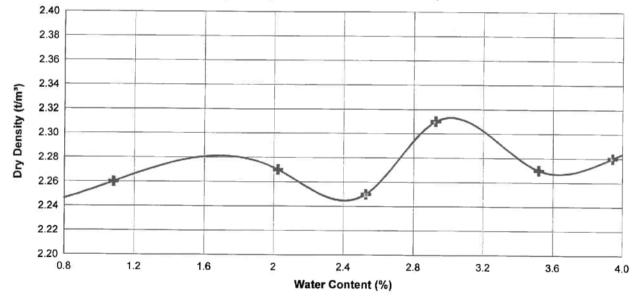
15/12/2017

Final

Page 1 of 2

08:00

Test Methods:


Determination of the Dry Density/Water Content Relationship - New

Zealand Vibrating Hammer Compaction Test

Results

Water Content (%)	1.08	2.02	2.53	2.93	3.52	3.94
Dry Density (t/m³)	2.26	2.27	2.25	2.31	2.27	2.28

Maximum Dry Density (t/m3) Optimum Water Content (%)

History of Sample

3.0 Result obtained from oven-dried

2.32

13/12/2017

sample. Passing 37.5mm

sieve

Test Fraction

Test Date:

Issue Date: 3/10/17

Doc: WI-LIMS-92

Issue No: 8

Report No: 257833

Final

15/12/2017

Page 2 of 2

Notes

Date of sample receipt:

08/12/2017

Vicky Henderson Approved Signatory Laboratory Manager IANZ Accreditation No: 439 Date of Issue: 10/04/92

Doc: WI-LIMS-92

Tests indicated as not accredited are outside the scope of the laboratory's accreditation. This report may not be reproduced except in full.

Leading Transport Technology

PO Box 11326, Sockburn, Christchurch, 8443

Phone: 03 359 0757

Test Report

Client:

K.B. Contracting & Quarries Limited

Address:

PO Box 19746, Woolston, Christchurch 8241

Job Location:

Mcleans Island

Material:

Pitrun

Material Source:

Mcleans Island

Sample Date:

14/10/2021

Pete Haward

Sampled By: Laboratory No:

C21/1895

Client Ref:

Not Advised

20/10/2021

Report No: Report Date:

52897

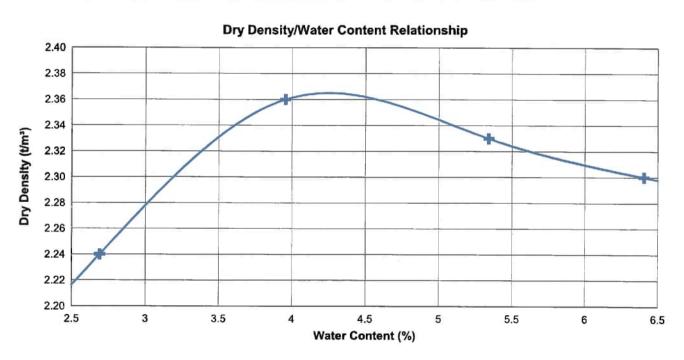
Final

10:00

Test Methods

Determination of the dry density/water content relationship - New Zealand vibrating hammer compaction test

NZS4402:1986 Test 4.1.3


Sampling from stockpiles of well graded aggregate - machine method

NZS4407:2015 Test 2.4.6.3.2

Determination of the Dry Density/Water Content Relationship - New Zealand Vibrating Hammer Compaction Test

Results

Dry Density (t/m³)	2.24	2.36	2.33	2.30
Water Content (%)	2.7	4.0	5.3	6.4

Results

Natural moisture content (%)

3.5

Maximum Dry Density (t/m3)

2.36

Optimum Water Content (%)

4.2

Test Fraction

Passing 37.5mm sieve

Test Date:

19-10-2021

PO Box 11326, Sockburn, Christchurch, 8443 Phone: 03 359 0757

Laboratory No:

C21/1895

Report No: Report Date: 52897 20/10/2021 Final

Sample Notes

Sample received in a damp condition.

Test results apply to sample as received.

Date of sample receipt:

14/10/2021

Vicky Henderson Laboratory Manager Wan-

This report may not be reproduced except in full.

Road Science Leading Transport Technology

PO Box 11326, Sockburn, Christchurch, 8443 Phone: 03 359 0757

Test Report

Client:

K.B. Contracting & Quarries Limited

PO Box 19746, Woolston, Christchurch 8241

Address: Client Ref:

Not Advised

Job Location:

Mcleans Island

Material:

Material Source:

Pitrun

Mcleans Island

Laboratory No:

Report No:

Sample Date:

Sampled By:

C21/0839 45807

Final

13:00

Report Date:

27/04/2021

19/04/2021

Pete Haward

Test Methods

The clay index

Particle size distribution - Subsidiary method by dry sieving

Determination of the dry density/water content relationship - New Zealand vibrating hammer compaction test

* Sampling from stockpiles of well graded aggregate - machine method

* Test methods marked with an asterisk are not accredited.

NZS 4407:2015 Test 3,5

NZS 4407:2015 Test 3.8.2

NZS4402:1986 Test 4.1.3

NZS4407:2015 Test 2.4.6.3.2

Results

Clay index:

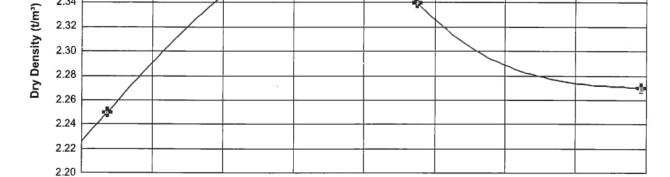
1.9

Test Date:

23-04-2021

Note: The field sample was sourced from natural fines

3.5


Determination of the Dry Density/Water Content Relationship - New Zealand Vibrating Hammer Compaction Test

Results

2.34

Dry Density (t/m³)	2.25	2.37	2.37	2.34	2.27
Water Content (%)	3.2	4.3	5.1	5.4	7.0

2.40 2.38 2.36

4.5

Dry Density/Water Content Relationship

5.5

6

6.5

The Clay Index

PO Box 11326, Sockburn, Christchurch, 8443 Phone: 03 359 0757

Laboratory No:

C21/0839

Report No:

45807

Final

Report Date:

27/04/2021

Results

Maximum Dry Density (t/m3)

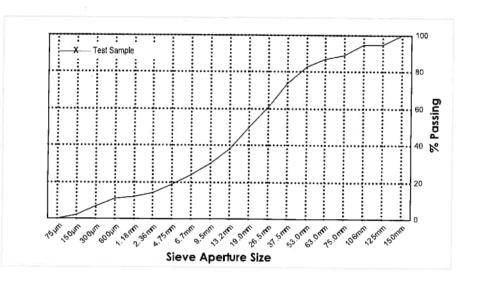
2.38

Optimum Water Content (%)

4.8

Test Fraction

Passing 37.5mm sieve


Test Date:

20-04-2021

The Particle-Size Distribution - Subsidiary Method by Dry Sieving

Results

Sieve Size (BSS)	Percent passing	Specification
150mm	100	
125mm	95	
106mm	95	
75.0mm	89	
63.0mm	87	
53.0mm	83	
37.5mm	74	
26.5mm	61	
19.0mm	50	
13.2mm	38	
9.5mm	30	
6.7mm	24	
4.75mm	19	
2.36mm	14	
1.18mm	12	
600µm	11	
300µm	7	
150µm	2	
75µm	0	

Note: PSD results obtained from an oven dry test sample.

Test Date:

27-04-2021

Sample Notes

Sample received in a damp condition.

Test results apply to sample as received.

Date of sample receipt:

20/04/2021

Vicky Henderson Approved Signatory Laboratory Manager IANZ Accreditation No: 439

Tests indicated as not accredited are outside the scope of the laboratory's accreditation. This report may not be reproduced except in full.

Appendix C NDM Earthfill Testing Results

Project No. 235361

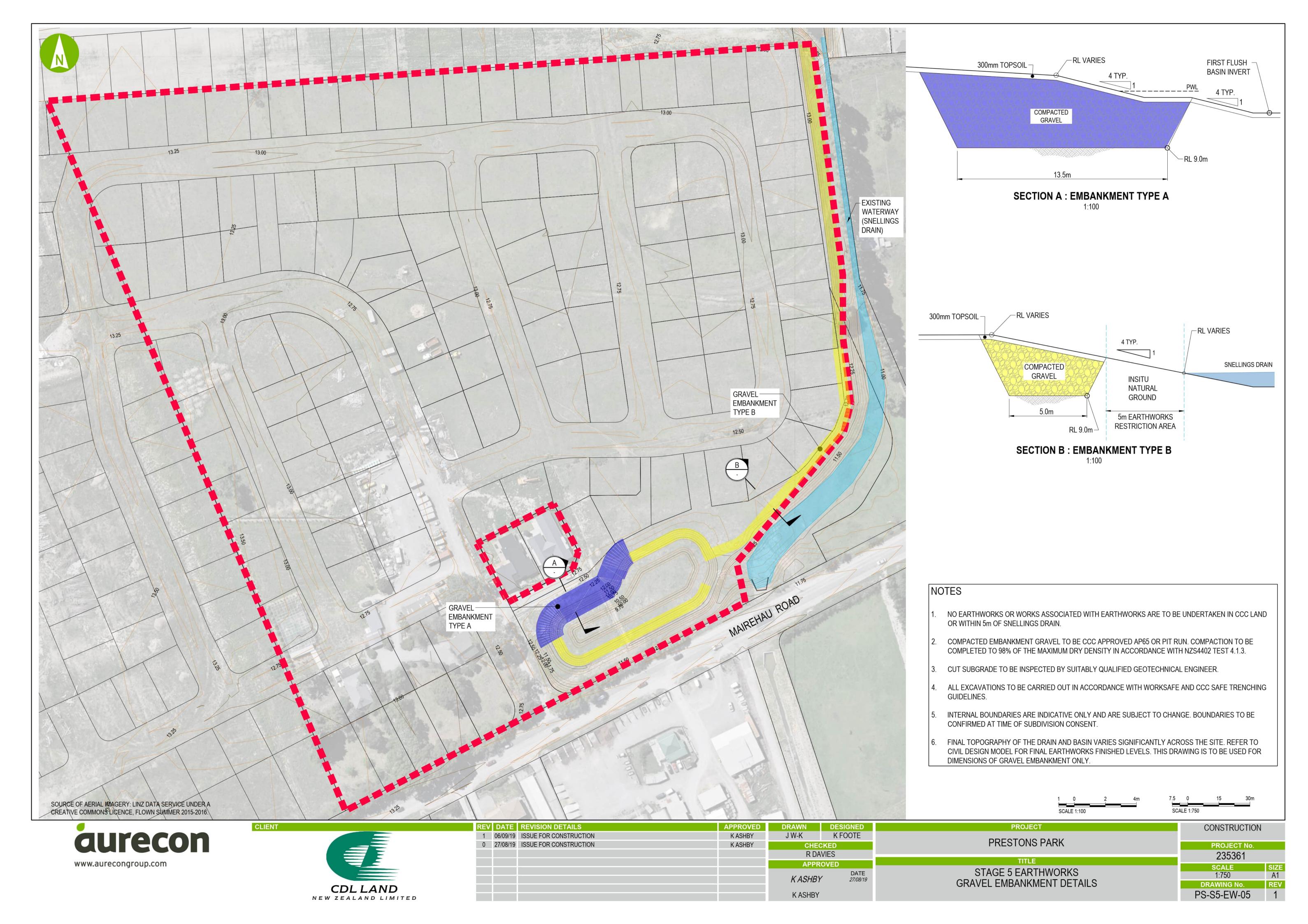
Test Date	Test ID#	Test # Uni	ique ID mE		mN	Stage	MDD	Туре	Lift #	Lot ID	Compaction (%)
19/09/2019	9 2334/19	5	11 395	799.532	812147.449	Stage 5	2320	Pitrun	Lift 1	Lot 1040	100
19/09/2019	9 2334/19	6	12 395	810.316	812129.671	Stage 5	2320	Pitrun	Lift 1	Lot 1040	100
19/09/2019	9 2334/19	7	13 39	5818.33	812130.108	Stage 5	2320	Pitrun	Lift 1	Lot 1039	101
19/09/2019	9 2334/19	8	14 395	826.782	812149.489	Stage 5	2320	Pitrun	Lift 1	Lot 1039	101
19/09/2019	9 2334/19	9	15 395	833.923	812149.926	Stage 5	2320	Pitrun	Lift 1	Lot 1038	99
19/09/2019	9 2334/19	10	16 395	845.531	812132.07	Stage 5	2320	Pitrun	Lift 1	Lot 1038	99
19/09/2019	9 2334/19	11	17 395	852.143	812132.841	Stage 5	2320	Pitrun	Lift 1	Lot 1037	99
19/09/2019	9 2334/19	12	18 395	859.194	812151.463	Stage 5	2320	Pitrun	Lift 1	Lot 1037	99
19/09/2019	9 2334/19	13	19 395	868.107	812152.173	Stage 5	2320	Pitrun	Lift 1	Lot 1036	100
19/09/2019	9 2334/19	14	20 395	878.016	812135.998	Stage 5	2320	Pitrun	Lift 1	Lot 1036	97
19/09/2019	9 2334/19	15	21 395	886.759	812136.435	Stage 5	2320	Pitrun	Lift 1	Lot 1035	98
19/09/2019	9 2334/19	16	22 395	894.191	812153.921	Stage 5	2320	Pitrun	Lift 1	Lot 1035	98
25/09/2019	9 2391/19	1	47 395	842.903	812150.659	Stage 5	2320	Pitrun	Lift 2	Lot 1038	98
25/09/2019	9 2391/19	2	48 395	834.969	812131.486	Stage 5	2320	Pitrun	Lift 2	Lot 1038	97
25/09/2019	9 2391/19	3	49 395	827.587	812131.045	Stage 5	2320	Pitrun	Lift 2	Lot 1039	99
25/09/2019	9 2391/19	4	50 39	5817.34	812148.675	Stage 5	2320	Pitrun	Lift 2	Lot 1039	99
25/09/2019	9 2391/19	5	51 395	809.296	812148.234	Stage 5	2320	Pitrun	Lift 2	Lot 1040	100
25/09/2019	9 2391/19	6	52 39	5800.04	812128.842	Stage 5	2320	Pitrun	Lift 2	Lot 1040	98
24/09/2019	9 2358/19	1	69 395	990.515	812141.585	Stage 5	2320	Pitrun	Lift 1	Lot 1030	100
24/09/2019	9 2358/19	2	70 395	989.204	812157.615	Stage 5	2320	Pitrun	Lift 1	Lot 1030	99
24/09/2019	9 2358/19	3	71 395	967.929	812158.78	Stage 5	2320	Pitrun	Lift 1	Lot 1031	96
24/09/2019	9 2358/19	4	72 395	969.386	812143.043	Stage 5	2320	Pitrun	Lift 1	Lot 1031	101
24/09/201	9 2358/19	5	73 395	952.191	812141.148	Stage 5	2320	Pitrun	Lift 1	Lot 1032	99
24/09/2019	9 2358/19	6	74 395	950.588	812157.177	Stage 5	2320	Pitrun	Lift 1	Lot 1032	103
24/09/201	9 2358/19	7	75 395	933.247	812156.303	Stage 5	2320	Pitrun	Lift 1	Lot 1033	97
24/09/2019	9 2358/19	8			812140.274	_	2320	Pitrun	Lift 1	Lot 1033	99
24/09/201	9 2358/19	9	77 395	907.746	812139.254	Stage 5	2320	Pitrun	Lift 1	Lot 1034	100
24/09/2019	9 2358/19	10	78 39	5905.56	812153.972	Stage 5	2320	Pitrun	Lift 1	Lot 1034	
24/09/2019	9 2358/19	11	79 395	889.239	812153.243	Stage 5	2320	Pitrun	Lift 1	Lot 1035	
24/09/2019	9 2358/19	12	80 395	890.842	812137.068	Stage 5	2320	Pitrun	Lift 1	Lot 1035	98
24/09/201	9 2358/19	13	81 395	873.793	812135.757	Stage 5	2320	Pitrun	Lift 1	Lot 1036	98
24/09/2019	9 2358/19	14		872.627		_		Pitrun	Lift 1	Lot 1036	
27/09/2019		1			812141.585	_		Pitrun	Lift 2	Lot 1030	
27/09/201		2			812157.615	_		Pitrun	Lift 2	Lot 1030	
27/09/2019		3		967.929	812158.78			Pitrun	Lift 2	Lot 1031	
27/09/2019		4			812143.043	-		Pitrun	Lift 2	Lot 1031	
27/09/2019		5			812141.148			Pitrun	Lift 2	Lot 1032	
27/09/2019		6			812157.177			Pitrun	Lift 2	Lot 1032	
27/09/2019		7			812156.303	_		Pitrun	Lift 2	Lot 1033	
27/09/201		8			812140.274	-		Pitrun	Lift 2	Lot 1033	
27/09/2019		9			812139.254	_		Pitrun	Lift 2	Lot 1034	
27/09/201		10			812153.972	_		Pitrun	Lift 2	Lot 1034	
27/09/2019		11			812153.243			Pitrun	Lift 2	Lot 1035	
27/09/2019	9 2382/19	12	94 395	890.842	812137.068	Stage 5	2320	Pitrun	Lift 2	Lot 1035	99

Project No. 235361

Test Date	Test ID#	Test # Uni	ique ID r	mE	mN	Stage	MDD 1	Гуре	Lift #	Lot I	D Compaction (%)
27/09/2019	2382/19	13	95	395873.793	812135.757	Stage 5	2320	Pitrun	Lift 2	Lot 103	6 96
27/09/2019	2382/19	14	96	395872.627	812151.64	Stage 5	2320	Pitrun	Lift 2	Lot 103	6 100
27/09/2019	2382/19	15	97	395855.455	812150.734	Stage 5	2320	Pitrun	Lift 2	Lot 103	7 96
27/09/2019	2382/19	16	98	395856.628	812133.306	Stage 5	2320	Pitrun	Lift 2	Lot 103	7 98
2/10/2019	2425/19	1	99	395928.637	812155.737	Stage 5	2320	Pitrun	Lift 3	Lot 103	3 99
2/10/2019	2425/19	2	100	395940.206	812140.862	Stage 5	2320	Pitrun	Lift 3	Lot 103	3 98
2/10/2019	2425/19	3	101	395946.046	812141.082	Stage 5	2320 F	Pitrun	Lift 3	Lot 103	2 99
2/10/2019	2425/19	4	102	395955.412	812157.61	Stage 5	2320	Pitrun	Lift 3	Lot 103	2 99
2/10/2019	2425/19	5	103	395962.244	812158.271	Stage 5	2320	Pitrun	Lift 3	Lot 103	1 96
2/10/2019	2425/19	6	104	395973.703	812143.837	Stage 5	2320	Pitrun	Lift 3	Lot 103	1 98
2/10/2019	2425/19	7	105	395983.069	812139.319	Stage 5	2320 F	Pitrun	Lift 3	Lot 103	0 99
2/10/2019	2425/19	8	106	395994.969	812158.712	Stage 5	2320	Pitrun	Lift 3	Lot 103	0 100
3/10/2019	2454/19	3	109	395800.04	812128.842	Stage 5	2320 F	Pitrun	Final Lift	Lot 104	.0 95
3/10/2019	2454/19	4	110	395809.296	812148.234	Stage 5	2320 F	Pitrun	Final Lift	Lot 104	.0 96
3/10/2019	2454/19	5	111	395817.34	812148.675	Stage 5	2320 F	Pitrun	Final Lift	Lot 103	9 100
3/10/2019	2454/19	6	112	395827.587	812131.045	Stage 5	2320	Pitrun	Final Lift	Lot 103	9 99
3/10/2019	2454/19	7	113	395834.969	812131.486	Stage 5	2320 F	Pitrun	Final Lift	Lot 103	8 99
3/10/2019	2454/19	8	114	395842.903	812150.659	Stage 5	2320 F	Pitrun	Final Lift	Lot 103	8 98
3/10/2019	2454/19	9	115	395850.739	812150.694	Stage 5	2320	Pitrun	Final Lift	Lot 103	7 96
3/10/2019	2454/19	10	116	395862.259	812133.451	Stage 5	2320 F	Pitrun	Final Lift	Lot 103	7 100
3/10/2019	2454/19	11	117	395867.982	812134.9	Stage 5	2320 F	Pitrun	Final Lift	Lot 103	6 97
3/10/2019	2454/19	12	118	395876.966	812152.36	Stage 5	2320 F	Pitrun	Final Lift	Lot 103	6 97
3/10/2019	2454/19	13	119	395885.152	812152.795	Stage 5	2320 F	Pitrun	Final Lift	Lot 103	5 98
3/10/2019	2454/19	14	120	395896.527	812137.218	Stage 5	2320 F	Pitrun	Final Lift	Lot 103	5 103
3/10/2019	2454/19	15	121	395903.468	812137.635	Stage 5	2320	Pitrun	Final Lift	Lot 103	4 102
3/10/2019	2454/19	16	122	395911.324	812154.69	Stage 5	2320 I	Pitrun	Final Lift	Lot 103	4 99
3/10/2019	2454/19	17	123	395928.637	812155.737	Stage 5	2320	Pitrun	Final Lift	Lot 103	3 99
3/10/2019	2454/19	18	124	395940.206	812140.862	Stage 5	2320 F	Pitrun	Final Lift	Lot 103	3 100
3/10/2019	2454/19	19	125	395946.046	812141.082	Stage 5	2320 F	Pitrun	Final Lift	Lot 103	2 100
3/10/2019	2454/19	20	126	395955.412	812157.61	Stage 5	2320	Pitrun	Final Lift	Lot 103	2 96
3/10/2019	2454/19	21	127	395962.244	812158.271	Stage 5	2320	Pitrun	Final Lift	Lot 103	1 97
3/10/2019	2454/19	22			812143.837	_	2320	Pitrun	Final Lift	Lot 103	1 98
3/10/2019	2454/19	23			812139.319	_	2320	Pitrun	Final Lift	Lot 103	
3/10/2019	2454/19	24			812158.712		2320 F	Pitrun	Final Lift	Lot 103	0 99
12/05/2020	KB20/0149	1	131	395984.608	812125.176	Stage 5	2320	Pitrun	Lift 1	Lot 102	9 99
12/05/2020	KB20/0149	2		395999.928		0	2320	Pitrun	Lift 1	Lot 102	
12/05/2020	KB20/0149	3			812110.027	_	2320	Pitrun	Lift 1	Lot 102	
12/05/2020	KB20/0149	4			812108.829	Stage 5	2320 F	Pitrun	Lift 1	Lot 102	
13/05/2020	KB20/0158	1		395999.928		-	2320 [Pitrun	Lift 2	Lot 102	9 100
13/05/2020	KB20/0158	2			812110.027	_	2320	Pitrun	Lift 2	Lot 102	
13/05/2020	KB20/0158	7			812108.829		2320 F		Lift 2	Lot 102	
13/05/2020	KB20/0158	8			812125.176		2320 F		Lift 2	Lot 102	
19/11/2020		1			812110.221	_	1600 5		Lift 3	Lot 100	
19/11/2020	1949-20	2	168	395927.704	812094.098	Stage 5	1600 9	Sand	Lift 3	Lot 100	4 100

Project No. 235361

Test Date	Test ID#	Test # Uniqu	ie ID mF		mN	Stage	MDD	Туре	Lift #	Let ID	Compaction (%)
16/11/2020					812109.725			Sand	Lift 2	Lot 1004	
16/11/2020					812094.369	_		Sand	Lift 2	Lot 1004	
16/11/2020					812094.013	_		Sand	Lift 2	Lot 1004	
16/11/2020					812110.445	_		Sand	Lift 2	Lot 1004	
11/11/2020				36.34				Sand	Lift 1	Lot 1004	
11/11/2020					812093.531			Sand	Lift 1	Lot 1004	
11/11/2020			185 39592	7.422	812093.655	Stage 5	1640	Sand	Lift 1	Lot 1004	99
11/11/2020		8	186 39593	6.047	812109.827	Stage 5	1640	Sand	Lift 1	Lot 1004	102
16/11/2020	KB20/0425				812112.472		2320	Pitrun	Lift 1	Lot 1005	98
16/11/2020	KB20/0425	2	248 39594	6.465	812095.777	Stage 5	2320	Pitrun	Lift 1	Lot 1005	97
17/11/2020	KB20/0426	1	251 39594	5.267	812111.807	Stage 5	2320	Pitrun	Lift 2	Lot 1005	98
17/11/2020	KB20/0426	2	252 39594	7.143	812096.107	Stage 5	2320	Pitrun	Lift 2	Lot 1005	99
20/11/2020	KB20/0432	1	255 39595:	1.296	812112.53	Stage 5	2320	Pitrun	Final Lift	Lot 1005	98
20/11/2020	KB20/0432	2	256 3959	61.24	812099.101	Stage 5	2320	Pitrun	Final Lift	Lot 1005	99
20/01/2022	3071_001 (0051/2	1	328 396010	0.149	812109.322	Stage 5	2360	Pitrun	Lift 11	Gravel embankment - From Lot 1028 to Lot 1030 in 15 m intervals	95
20/01/2022	3071_001 (0051/2	2	329 39600	7.881	812126.187	Stage 5	2360	Pitrun	Lift 11	Gravel embankment - From Lot 1028 to Lot 1030 in 15 m intervals	96
20/01/2022	3071_001 (0051/2	3	330 39600	5.093	812147.666	Stage 5	2360	Pitrun	Lift 11	Gravel embankment - From Lot 1028 to Lot 1030 in 15 m intervals	95
20/01/2022	3071_001 (0051/2	4	331 39600	2.866	812161.695	Stage 5	2360	Pitrun	Lift 11	Gravel embankment - From Lot 1028 to Lot 1030 in 15 m intervals	95
23/02/2022	KB22/0071	1	400 39581	1.448	812104.845	Stage 5	2360	Pitrun	Lift 2	Lot 982	96
23/02/2022	KB22/0071	2	401 39582	4.697	812105.513	Stage 5	2360	Pitrun	Lift 2	Lot 982	99
23/02/2022	KB22/0071	3	402 3958	54.09	812107.851	Stage 5	2360	Pitrun	Lift 2	Lot 992	95
23/02/2022	KB22/0071	4	403 39586	8.786	812108.853	Stage 5	2360	Pitrun	Lift 2	Lot 992	100
23/02/2022	KB22/0071	5	404 395886	0.477	812109.632	Stage 5	2360	Pitrun	Lift 2	Lot 993	99
23/02/2022	KB22/0071		405 3958	94.06	812109.966	Stage 5	2360	Pitrun	Lift 2	Lot 993	
23/02/2022	KB22/0073		406 39581	1.448	812104.845	Stage 5	2360	Pitrun	Lift 3	Lot 982	
23/02/2022	KB22/0073				812105.513	_		Pitrun	Lift 3	Lot 982	
22/02/2022	KB22/0065				812104.845	_		Pitrun	Lift 1	Lot 982	
22/02/2022	KB22/0065	_			812105.513			Pitrun	Lift 1	Lot 982	
	KB22/0065				812107.851			Pitrun	Lift 1	Lot 992	
	KB22/0065				812108.853			Pitrun	Lift 1	Lot 992	
	KB22/0065				812109.632	-		Pitrun	Lift 1	Lot 993	
	KB22/0065				812109.966	_		Pitrun	Lift 1	Lot 993	
	KB22/0080				812105.513			Pitrun	Lift 4	Lot 982	
	KB22/0080				812104.845	_		Pitrun	Lift 4	Lot 982	
	KB22/0096				812108.853			Pitrun	Lift 3	Lot 992	
	KB22/0096				812107.851	-		Pitrun	Lift 3	Lot 992	
	0907_001 (0909/2				812104.845			Sand	Lift 1	Lot 982	
	0907_001 (0909/2				812088.246			Sand	Lift 1	Lot 982	
	1022_001 (0939/2				812104.845	_		Sand	Lift 2	Lot 982	
	1022_001 (0939/2				812088.246			Sand	Lift 2	Lot 982	
6. 7.0	1204_001 (1001/2				812104.845			Sand	Lift 3 Lift 3	Lot 982	
	1204_001 (1001/2				812088.246			Sand		Lot 982	
	1541_001 (1033/2				812104.845			Sand	Lift 4 (Final)	Lot 982	
1//02/2022	1541_001 (1033/2	. 8	055 59582	0.876	812088.246	stage 5	1640	Sand	Lift 4 (Final)	Lot 982	99


Project No. 235361

Test Date	Test ID#	Test # Un	ique ID	mE	mN	Stage	MDD	Type	Lift #	Lot ID (Compaction (%)
1/10/2019	9 2421_19 (2454/19	5	666	395799.238	812144.694	Stage 5	2320) Pitrun	lift 3	Lot 1040	98
1/10/2019	9 2421_19 (2454/19	9 6	667	395810.003	812133.174	Stage 5	2320) Pitrun	lift 3	Lot 1040	99
1/10/2019	9 2421_19 (2454/19	7	668	395818.314	812134.352	Stage 5	2320) Pitrun	lift 3	Lot 1039	98
1/10/2019	9 2421_19 (2454/19	8 6	669	395826.407	812145.582	Stage 5	2320) Pitrun	lift 3	Lot 1039	101
1/10/2019	9 2421_19 (2454/19	9	670	395833.464	812146.491	Stage 5	2320) Pitrun	lift 3	Lot 1038	99
1/10/2019	9 2421_19 (2454/19	9 10	671	395844.631	812136.063	Stage 5	2320) Pitrun	lift 3	Lot 1038	99
1/10/2019	9 2421_19 (2454/19	9 11	672	395850.872	812136.802	Stage 5	2320) Pitrun	lift 3	Lot 1037	101
1/10/2019	9 2421_19 (2454/19	9 12	673	395860.56	812148.955	Stage 5	2320) Pitrun	lift 3	Lot 1037	100
1/10/2019	9 2421_19 (2454/19	9 13	674	395867.293	812149.283	Stage 5	2320) Pitrun	lift 3	Lot 1036	99
1/10/2019	9 2421_19 (2454/19	9 14	675	395879.362	812139.38	Stage 5	2320) Pitrun	lift 3	Lot 1036	99
1/10/2019	9 2421_19 (2454/19	9 15	676	395886.255	812139.38	Stage 5	2320) Pitrun	lift 3	Lot 1035	100
1/10/2019	9 2421_19 (2454/19	9 16	677	395894.564	812151.277	Stage 5	2320) Pitrun	lift 3	Lot 1035	101
1/10/2019	9 2421_19 (2454/19	9 17	678	395900.88	812152.609	Stage 5	2320) Pitrun	lift 3	Lot 1034	97
1/10/2019	9 2421_19 (2454/19	9 18	679	395912.117	812140.523	Stage 5	2320) Pitrun	lift 3	Lot 1034	97
27/07/2002	2 KB22/0286	1	823	396005.503	812142.316	Stage 5	2320) Pit Run	Lift 13	Lot 1030	98
27/07/2002	2 KB22/0286	2	824	396002.866	812161.695	Stage 5	2320) Pit Run	Lift 13	Lot 1030	98
20/01/2022	2 KB22/0012	1	875	396010.149	812109.322	Stage 5	2360) Pit Run	Lift 11 - Final	Gravel embankment - From Lot 1028 to Lot 1030 in 15 m intervals	95
20/01/2022	2 KB22/0012	2	876	396007.881	812126.187	Stage 5	2360) Pit Run	Lift 11 - Final	Gravel embankment - From Lot 1028 to Lot 1030 in 15 m intervals	98
20/01/2022	2 KB22/0012	3	877	396005.503	812142.316	Stage 5	2360) Pit Run	Lift 11 - Final	Gravel embankment - From Lot 1028 to Lot 1030 in 15 m intervals	95
20/01/2022	2 KB22/0012	4	878	396002.866	812161.695	Stage 5	2360) Pit Run	Lift 11 - Final	Gravel embankment - From Lot 1028 to Lot 1030 in 15 m intervals	96
13/01/2022	2 KB22/0002	1	879	396002.866	812161.695	Stage 5	2380) Pit Run	Lift 10	Gravel embankment - From Lot 1030 to Lot 1020 in 15 m intervals	97
13/01/2022	2 KB22/0002	2	880	396003.439	812154.498	Stage 5	2380) Pit Run	Lift 10	Gravel embankment - From Lot 1030 to Lot 1020 in 15 m intervals	96
13/01/2022	2 KB22/0002	3	881	396005.503	812142.316	Stage 5	2380) Pit Run	Lift 10	Gravel embankment - From Lot 1030 to Lot 1020 in 15 m intervals	95
13/01/2022	2 KB22/0002	4	882	396007.881	812126.187	Stage 5	2380) Pit Run	Lift 10	Gravel embankment - From Lot 1030 to Lot 1020 in 15 m intervals	95
13/01/2022	2 KB22/0002	5	883	396010.149	812109.322	Stage 5	2380) Pit Run	Lift 10	Gravel embankment - From Lot 1030 to Lot 1020 in 15 m intervals	96
13/01/2022	2 KB22/0002	6	884	396014.613	812086.757	Stage 5	2380) Pit Run	Lift 10	Gravel embankment - From Lot 1030 to Lot 1020 in 15 m intervals	95
13/01/2022	2 KB22/0002	7	885	396016.628	812071.497	Stage 5	2380) Pit Run	Lift 10	Gravel embankment - From Lot 1030 to Lot 1020 in 15 m intervals	95
13/01/2022	2 KB22/0002	8	886	396018.075	812056.244	Stage 5	2380) Pit Run	Lift 10	Gravel embankment - From Lot 1030 to Lot 1020 in 15 m intervals	95
13/01/2022	2 KB22/0002	9	887	396020.367	812039.746	Stage 5	2380) Pit Run	Lift 10	Gravel embankment - From Lot 1030 to Lot 1020 in 15 m intervals	95
13/01/2022	2 KB22/0002	10	888	396022.528	812022.843	Stage 5	2380) Pit Run	Lift 10	Gravel embankment - From Lot 1030 to Lot 1020 in 15 m intervals	98
13/01/2022	2 KB22/0002	11	889	396026.729	812013.6	Stage 5	2380) Pit Run	Lift 10	Gravel embankment - From Lot 1030 to Lot 1020 in 15 m intervals	96
13/01/2022	2 KB22/0002	12	890	396029.526	811998.14	Stage 5	2380) Pit Run	Lift 10	Gravel embankment - From Lot 1030 to Lot 1020 in 15 m intervals	95
13/01/2022	2 KB22/0002	13	891	396026.287	811983.121	Stage 5	2380) Pit Run	Lift 10	Gravel embankment - From Lot 1030 to Lot 1020 in 15 m intervals	96
13/01/2022	2 KB22/0002	14	892	396018.63	811970.311	Stage 5	2380) Pit Run	Lift 10	Gravel embankment - From Lot 1030 to Lot 1020 in 15 m intervals	95
13/01/2022	2 KB22/0001	1	893	396002.735	812163.606	Stage 5	2380) Pit Run	Lift 9	Gravel embankment - From Lot 1030 to Lot 1023	95
13/01/2022	2 KB22/0001	2	894	396003.439	812154.498	Stage 5	2380) Pit Run	Lift 9	Gravel embankment - From Lot 1030 to Lot 1023	95
13/01/2022	2 KB22/0001	3	895	396005.856	812139.916	Stage 5	2380) Pit Run	Lift 9	Gravel embankment - From Lot 1030 to Lot 1023	95
13/01/2022	2 KB22/0001	4	896	396007.881	812126.187	Stage 5	2380) Pit Run	Lift 9	Gravel embankment - From Lot 1030 to Lot 1023	97
13/01/2022	2 KB22/0001	5	897	396010.149	812109.322	Stage 5	2380) Pit Run	Lift 9	Gravel embankment - From Lot 1030 to Lot 1023	95
13/01/2022	2 KB22/0001	6	898	396014.613	812086.757	Stage 5	2380) Pit Run	Lift 9	Gravel embankment - From Lot 1030 to Lot 1023	95
13/01/2022	2 KB22/0001	7	899	396016.628	812071.497	Stage 5	2380) Pit Run	Lift 9	Gravel embankment - From Lot 1030 to Lot 1023	95
13/01/2022	2 KB22/0001	8	900	396018.075	812056.244	Stage 5	2380) Pit Run	Lift 9	Gravel embankment - From Lot 1030 to Lot 1023	95
13/01/2022	2 KB22/0001	9	901	396020.367	812039.746	Stage 5	2380) Pit Run	Lift 9	Gravel embankment - From Lot 1030 to Lot 1023	95
13/01/2022	2 KB22/0001	10	902	396022.528	812022.843	Stage 5	2380) Pit Run	Lift 9	Gravel embankment - From Lot 1030 to Lot 1023	98

Project No. 235361

Test Date	Test ID#	Test # Un	ique ID i	mE	mΝ	Stage	MDD	Type	Lift #	Lot ID	Compaction (%)
6/09/2022	2 1480/22	5	907	395938.786	812094.369		164	0 Sand	Lift 4	Lot 1004	99
6/09/2022	2 1480/22	6	908	395925.713	812109.725		164	0 Sand	Lift 4	Lot 1004	96
8/09/2022	2 KB2/0366	1	909	395895.983	812097.66		232	0 Pit Run	Lift 1	Lot 993	100
8/09/2022	2 KB2/0366	2	910	395882.001	812096.553		232	0 Pit Run	Lift 1	Lot 993	102
8/09/2022	2 KB2/0366	3	911	395869.729	812095.245		232	0 Pit Run	Lift 1	Lot 992	101
8/09/2022	2 KB2/0366	4	912	395855.143	812094.038		232	0 Pit Run	Lift 1	Lot 992	99
9/09/2022	2 KB2/0369	1	913	395895.983	812097.66		232	0 Pit Run	Lift 2	Lot 993	96
9/09/2022	2 KB2/0369	2	914	395882.001	812096.553		232	0 Pit Run	Lift 2	Lot 993	98
9/09/2022	2 KB2/0369	3	915	395869.729	812095.245		232	0 Pit Run	Lift 2	Lot 992	97
9/09/2022	2 KB2/0369	4	916	395855.143	812094.038		232	0 Pit Run	Lift 2	Lot 992	. 97
6/09/2022	2 1480 (1480/22)	5	937	395927.704	812094.098		164	0 Sand	Final Lift	Lot 1004	99
6/09/2022	2 1480 (1480/22)	6	938	395936.267	812110.445		164	0 Sand	Final Lift	Lot 1004	96
13/09/2022	2 KB22/0375	1	939	395855.143	812094.038		232	0 Pit Run	Lift 3	Lot 992	98
13/09/2022	2 KB22/0375	2	940	395869.729	812095.245		232	0 Pit Run	Lift 3	Lot 992	97
13/09/2022	2 KB22/0375	3	941	395882.001	812096.553		232	0 Pit Run	Lift 3	Lot 993	97
13/09/2022	2 KB22/0375	4	942	395895.983	812097.66		232	0 Pit Run	Lift 3	Lot 993	97
13/09/2022	2 1515 (1515/22)	1	943	395854.09	812107.851		232	0 Pit Run	Final Lift	Lot 992	98
13/09/2022	2 1515 (1515/22)	2	944	395869.729	812095.245		232	0 Pit Run	Final Lift	Lot 992	96
13/09/2022	2 1515 (1515/22)	3	945	395882.001	812096.553		232	0 Pit Run	Final Lift	Lot 993	96
13/09/2022	2 1515 (1515/22)	4	946	395894.06	812109.966		232	0 Pit Run	Final Lift	Lot 993	96

Appendix D Gravel Embankment Design and As-Builts

10 0 20 SCALE 1:1000

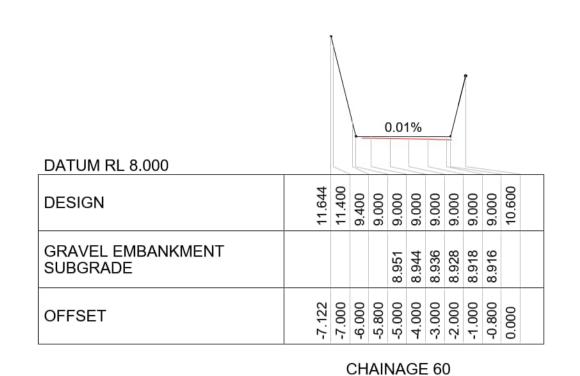
AS BUILT

PROJECT No. 235361

DRAWING No. REV LD-PS-S5-EW-12 A

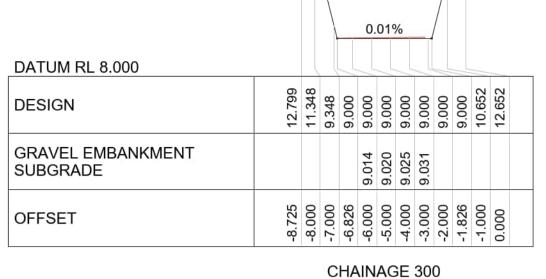
SIZE A1

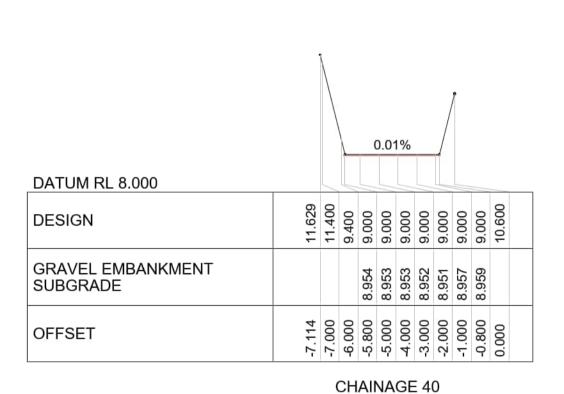
SCALE 1:1000(m)


aurecon	
www.aurecongroup.com	

CLIENT

REV DATE REVISION DETAILS	APPROVED	DRAWN	DESIGNED	PROJECT
		A. COLUMBUS	M. CROWE	
		CHE	CKED	PRESTONS PARK
		APPR	OVED	TITLE
A 20/10/22 AS BUILT ISSUE			DATE	STAGE 5 GRAVEL EMBANKMENT AS BUILT PLAN

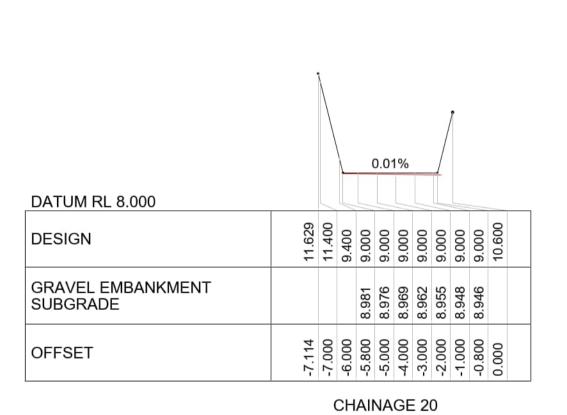


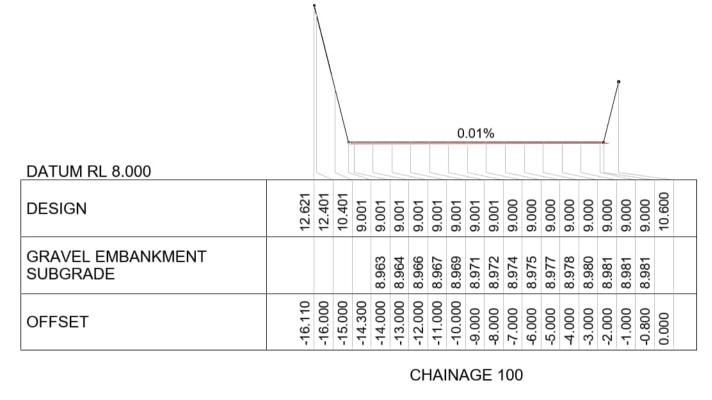



		_	0	.01	1%						
DATUM RL 8.000		L					L				
DESIGN 59:	11.400	9.400	00006	000.6	9.000	9.000	9.000	9.000	9.000	10.600	
GRAVEL EMBANKMENT SUBGRADE			8.993	8.991	8.988	8.986	8.983	8.982	8.981		
OFFSET 27.124	-7.000	-6.000	-5.800	-5.000	-4.000	-3.000	-2.000	-1.000	-0.800	0.000	

CHAINAGE 140

DATUM RL 8.000			/		0.0	01%	0						
DESIGN	12.658	11.871	9.871	00006	000.6	000.6	00006	00006	00006	9.000	10.129	12.129	
GRAVEL EMBANKMENT SUBGRADE				9.012	9.014	9.017	9.020	9.024	9.027				
OFFSET	-8.393	-8.000	-7.000	-6.565	-6.000	-5.000	-4.000	-3.000	-2.000	-1.565	-1.000	0.000	
			CH	IAF	NA	١GI	E 2	220)				





			\		0.	019	6						
DATUM RL 8.000					L								
DESIGN	12.641	11.638	9.638	9.000	9.000	9.000	9.000	000.6	9.000	9.000	10.362	12.362	
GRAVEL EMBANKMENT SUBGRADE					8.990	8.988	8.986	8.985	8.985				
OFFSET	-8.501	-8.000	-7.000	-6.681	-6.000	-5.000	-4.000	-3.000	-2.000	-1.681	-1.000	0.000	
	'		С	HA	IN	AG	EΣ	200	0				

DATUM RL 8.000					0.	019	//o						
DESIGN	12.737	11.840	9.840	00006	00006	00006	9.000	9.000	9.000	9.000	10.160	12.160	
GRAVEL EMBANKMENT SUBGRADE				8.982	8.984	8.990	966.8	9.001	9.007	600.6			
OFFSET	-8.448	-8.000	-7.000	-6.580	-6.000	-5.000	-4.000	-3.000	-2.000	-1.580	-1.000	0.000	
			CI	НΑ	IN	۸G	F	280)				

\sim \square	1 1 1 1 1	\sim	200
	AINA	(GE	200

					0.	01%	V6						
DATUM RL 8.000			ļ			-		-					
DESIGN	12.678	11.405	9.405	9.000	9.000	9.000	9.000	9.000	9.000	9.000	10.595	12.595	
GRAVEL EMBANKMENT SUBGRADE					8.989	9.001	9.013	9.024	9.036				
OFFSET	-8.637	-8.000	-7.000	-6.798	-6.000	-5.000	4.000	-3.000	-2.000	-1.798	-1.000	0.000	
			С	HΑ	IN.	AG	EΕ	18	0				

			\		0.	01%	%						
DATUM RL 8.000			Ų	L		L							
DESIGN	12.719	11.919	9.919	9.000	9.000	9.000	000.6	9.000	9.000	9.000	10.082	12.082	
GRAVEL EMBANKMENT SUBGRADE				8.993	8.998	9.007	9.015	9.025	9.035				
OFFSET	-8.400	-8.000	-7.000	-6.541	-6.000	-5.000	-4.000	-3.000	-2.000	-1.541	-1.000	0.000	
			Cł	ΗA	INA	٩G	Εź	260)				

CHAINAGE 260

		\		(0.01	1%			7			
DATUM RL 8.000			L	L				L				
DESIGN	11.618	11.400	9.400	9.000	9.000	9.000	9.000	9.000	9.000	9.000	10.600	
GRAVEL EMBANKMENT SUBGRADE				9.134								
OFFSET	-7.109	-7.000	-6.000	-5.800	-5.000	-4.000	-3.000	-2.000	-1.000	-0.800	0.000	

CHAINAGE 0

CLIENT

DATUM RL 8.000									0.	.01	%										
BATTOW THE GLOOD	0	_	_																	0	
DESIGN	12.690	12.401	10.401	9.001	9.001	9.001	9.001	9.001	9.001	9.001	9.001	9.000	9.000	9.000	9.000	9.000	9.000	9.000	9.000	10.600	
GRAVEL EMBANKMENT				33	32	82	74	51	17	13	01	36	32	53	72	55	22	20	6		
SUBGRADE				8.963	8.962	8.958	8.954	8.951	8.947	8.943	8.940	8.936	8.932	8.929	8.927	8.925	8.922	8.920	8.919		
	45	8	8	8	8	8	8	8	8	0	0	0	0	0	0	0	0	0	0	0	
OFFSET	-16.145	-16.000	-15.000	-14.300	-14.000	-13.000	-12.000	-11.000	-10.000	-9.000	-8.000	-7.000	-6.000	-5.000	-4.000	-3.000	-2.000	-1.000	-0.800	0.000	
							CI	НА	INA	٩G	E	80									

DATUM RL 8.000					0.0)1%	,					
DESIGN		11.961	10.671	0000	9.000	9.000	9.000	9.000	9.000	9.329	11.329	
GRAVEL EMBANKMENT SUBGRADE				8.995	8.999	9.005	9.013	9.020				
OFFSET		-7.645	-7.000	-6.164	-5.000	-4.000	-3.000	-2.000	-1.164	-1.000	0.000	
	,		С	CHA	INA	GE	Ξ 1	60				

					0.	019	%						
DATUM RL 8.000			Ų	L		L							
DESIGN	12.695	11.692	9.692	9.000	9.000	9.000	9.000	9.000	9.000	9.000	10.309	12.309	
GRAVEL EMBANKMENT SUBGRADE			8.976	8.977	8.980	8.989	8.999	9.008					
OFFSET	-8.502	-8.000	-7.000	-6.654	-6.000	-5.000	-4.000	-3.000	-2.000	-1.654	-1.000	0.000	

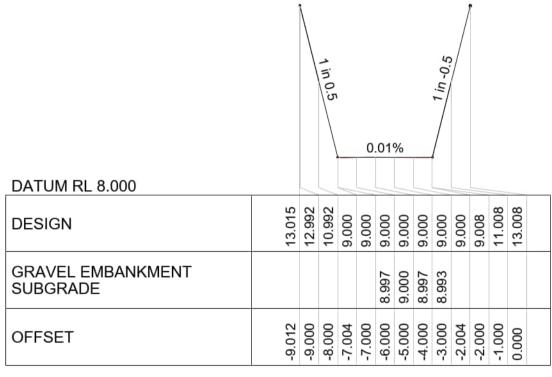
CHAINAGE 240

aurecon
adictoii

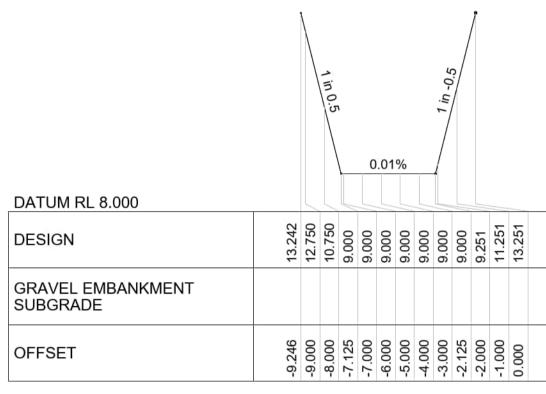
www.aurecongroup.com

)		

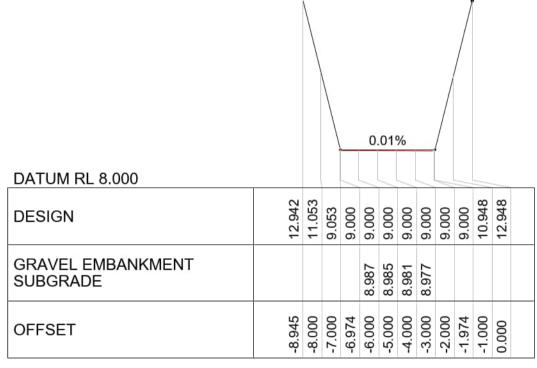
REV	DATE	REVISION DETAILS	APPROVED	DRAWN	DESIGNED	PROJECT
				A. COLUMBUS	M. CROWE	
				CHEC	KED	PRESTONS PARK
				APPR	OVED	TITLE
					DATE	STAGE 5 GRAVEL EMBANKMENT AS BUILT CROSS SECTION SHEET 1 OF 2
Α	20/10/22	AS BUILT ISSUE				SHEELLOFZ


SCALE 1:200 AS BUILT PROJECT No. 235361 SCALE 1:200(m) DRAWING No. REV

LD-PS-S5-EW-13 A



			\		0.0	1%							
DATUM RL 8.000			Ļ										
DESIGN	13.088	12.931	10.931	9.000	00006	9.000	9.000	9.000	9.000	690.6	11.069	13.069	
GRAVEL EMBANKMENT SUBGRADE				8.945	8.946	8.981	8.998	9.012	8.995	8.995			
OFFSET	-9.079	-9.000	-8.000	-7.035	-7.000	-5.000	-4.000	-3.000	-2.035	-2.000	-1.000	0.000	


CHAINAGE 380

CHAINAGE 360

CHAINAGE 439.739

CHAINAGE 340

DATUM PL 8 000			1 in 0.5		0	.01	%_		1 in -0 5		İ			
DATUM RL 8.000							_	_				_		
DESIGN	13.191	12.810	10.810	9.000	9.000	9.000	9.000	9.000	9.000	9.000	9.191	11.191	13.191	
GRAVEL EMBANKMENT SUBGRADE				8.995	8.996	9.001	9.006	9.011	9.016					
OFFSET	-9.191	-9.000	-8.000	-7.095	-7.000	-6.000	-5.000	-4.000	-3.000	-2.095	-2.000	-1.000	0.000	

CHAINAGE 420

					0.	019	%						
DATUM RL 8.000													
DESIGN	12.867	11.113	9.113	9.000	9.000	9.000	9.000	9.000	9.000	9.000	10.887	12.887	
GRAVEL EMBANKMENT SUBGRADE					9.027	9.025	9.024	9.022					
OFFSET	-8.877	-8.000	-7.000	-6.943	-6.000	-5.000	-4.000	-3.000	-2.000	-1.943	-1.000	0.000	

CHAINAGE 320

CLIENT

			1 in 0.5		0	.011	%_		1 in -0.5		•			
OATUM RL 8.000														
DESIGN	13.139	12.870	10.870	9.000	9.000	9.000	9.000	9.000	9.000	9.000	9.130	11.130	13.130	
GRAVEL EMBANKMENT SUBGRADE				8.981	8.982	8.992	9.002	9.008	9.012	9.016	9.017			
DFFSET	-9.134	-9.000	-8.000	-7.065	-7.000	-6.000	-5.000	-4.000	-3.000	-2.065	-2.000	-1.000	0.000	

CHAINAGE 400

REV DATE REVISION DETAILS	APPROVED	DRAWN	DESIGNED	PROJECT
		A. COLUMBUS M. CROWE		DDECTONG DADIC
		CHE	CKED	PRESTONS PARK
				TITLE
		APPR	OVED	STAGE 5 GRAVEL EMBANKMEN
			DAIL	AS BUILT CROSS SECTION
				SHEET 2 OF 2
A 20/10/22 AS BUILT ISSUE				SHLLIZOIZ

TENDER

PROJECT No. 235361

LD-PS-S5-EW-14 A

DRAWING No. REV

SCALE 1:200(m)

Appendix E Post Earthworks CPT Testing

CONE PENETRATION TEST (CPT) REPORT

Client: Aurecon NZ Ltd

Location: Prestons Park, Christchurch

Printed: 09/05/2022

Client:

Aurecon NZ Ltd

Prestons Park, Christchurch

CPTu301

Job No.:

Bore No.:

20882

Site Location: Prestons Park, Christchurch Date: 6/5/2022 Grid Reference: 1573724.73m E, 5185683.38m N (NZTM) - Map or aerial photograph Rig Operator: B. Wilson

Elevation: 0.00m Datum: Ground Equipment: Geomil Panther 100

		RAW DATA		SOIL BEHAVIOUR TYPE (NON-NORMALISED)	ESTIM	ATED PARA	METERS				
	Cone resistance qc Sleeve friction f (MPa) (MPa)					a pressure u2 Inclination		Friction ratio Rf SBT	Dr (%)	Su (kPa)	N 60
	- 50	000000000000000000000000000000000000000	- 200	5 - 10 - 15		- 2 8 4 5 9 7 8 6	- 20 - 40 - 60 - 80	- 50 - 250 - 250 - 300 - 300 - 300	1 30		
		EOH: 10m			1.0 — 1.5 — 2.0 — 2.5 — 3.0 — 3.5 —	Sands: clean sands to sifty sands					

Cone Type: I-CFXYP20-10 - Compression	Predrill: 1.70m	Termination	Soil Behaviour Type (SB	T) - Robertson et al. 1986
Cone Reference: 100992	Water Level: -		0 Undefined	5 Sand mixtures: silty
Cone Area Ratio: 0.75	Collapse: 2.2m	Target Depth 🗸		sand to sandy silt
Standards: ISO 22476-1:2012		Effective Refusal	Sensitive fine-grained	6 Sands: clean sands to silty sands
Zero load outputs (MPa) Before test After te	est	Tip	2 Clay - organic soil	7 Dense sand to gravelly

Tip Resistance 0.9252 0.8986

Local Friction 0.0266 0.0265 Pore Pressure 0.0146 0.0130

Tanana Danah	0 Undefined	5
Target Depth ✓	Sensitive fine-grained	6
ffective Refusal Tip	2 Clay - organic soil	7
Gauge	3 Clavs: clav to silty clav	8

Inclinometer

Clays: clay to silty clay Silt mixtures: clayey silt & silty clay

	silty sands
7	Dense sand to gravelly
1	sand
0	Stiff sand to clayey
0	sand

9 Stiff fine-grained

Natas	0,	imitations	

Data shown on this report has been assessed to provide a basic interpretation in terms of Soil Behaviour Type (SBT) and various geotechnical soil and design parameters using methods published in P. K. Robertson and K.L. Cabal, Guide to Cone Penetration Testing for Geotechnical Engineering. The interpretations are presented only as a guide for geotechnical use, and should be carefully reviewed by the user. No warranty is provided as to the correctness or the applicability of any of the geotechnical soil and design parameters shown and does not assume any liability for any use of the results in any design or review. The user should be fully aware of the techniques and limitations of any method used to derive data shown in this report.

1	
ı	Remarks
١	
ı	
ı	
ı	
ı	
ı	Charles a Ca
ı	Sheet 1 of 1

Generated with Core-GS by Geroc

Client: Aurecon NZ Ltd

Bore No.:

Job No.:

CPTu302

Prestons Park, Christchurch 20882 Date: 6/5/2022 Site Location: Prestons Park, Christchurch Grid Reference: 1573767m E, 5185686.4m N (NZTM) - Map or aerial photograph Rig Operator: B. Wilson Elevation: 0.00m Datum: Ground Equipment: Geomil Panther 100 SOIL BEHAVIOUR TYPE **RAW DATA** ESTIMATED PARAMETERS (NON-NORMALISED) Friction ratio Rf Cone resistance qc Sleeve friction fs Pore pressure u2 Inclination Dr N60 Scale (MPa) (MPa) (kPa) (Degrees) (kPa) SBT 200 400 600 20 40 80 80 Cone Type: I-CFXYP20-10 - Compression Predrill: 1.70m Termination Soil Behaviour Type (SBT) - Robertson et al. 1986 Sand mixtures: silty Cone Reference: 100992 Water Level: 2.10m Undefined sand to sandy silt Target Depth ✓ Cone Area Ratio: 0.75 Collapse: 2.2m Sands: clean sands to Sensitive fine-grained Standards: ISO 22476-1:2012 silty sands **Effective Refusal** Dense sand to gravelly Clay - organic soil Zero load outputs (MPa) Before test After test Tip sand Clays: clay to silty clay

Tip Resistance 0.9258 0.9206 **Local Friction** 0.0286 0.0272

0.0180

Pore Pressure

Gauge Inclinometer

Stiff sand to clayey

sand 9 Stiff fine-grained

Notes & Limitations

Data shown on this report has been assessed to provide a basic interpretation in terms of Soil Behaviour Type (SBT) and various geotechnical soil and design parameters using methods published in P. K. Robertson and K.L. Cabal, Guide to Cone Penetration Testing for Geotechnical Engineering. The interpretations are presented only as a guide for geotechnical use, and should be carefully reviewed by the user. No warranty is provided as to the correctness or the applicability of any of the geotechnical soil and design parameters shown and does not assume any liability for any use of the results in any design or review. The user should be fully aware of the techniques and limitations of any method used to derive data shown in this report.

0.0157

Sheet 1 of 1

Silt mixtures: clayey silt

& silty clay

Client: Aurecon NZ Ltd Bore No.:

Prestons Park, Christchurch

CPTu303 Job No.:

20882

Site Location: Prestons Park, Christchurch Date: 6/5/2022 Grid Reference: 1573806.15m E, 5185696.46m N (NZTM) - Map or aerial photograph Rig Operator: B. Wilson

Elevation: 0.00m Datum: Ground Equipment: Geomil Panther 100

				SOIL BEHAVIOUR TYPE (NON-NORMALISED)	ESTIMATED PARAMETERS			
Cone resistance qc (MPa)	Sleeve friction fs (MPa)	Pore pressure u2 (kPa)	Inclination (Degrees)	Scale	Friction ratio Rf SBT	Dr (%)	Su (kPa)	N ₆₀
10 20 10	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	- 0 - 200 - 400 - 600 - 800	5 - 10 - 15 - 15		- N W 4 M 0 V 00 0	- 40 - 60 - 80	- 50 - 100 - 150 - 200 - 250 - 300 - 350	30
	EOH: 10m			1.0	Sands: clean sands to sity sands			

Pore Pressure

Zero load outputs (MPa) Before test After test **Tip Resistance** 0.1578 0.1308 **Local Friction** 0.0047 0.0049

-0.0074

Termination

Target Depth ✓ **Effective Refusal** Tip

Gauge

Inclinometer

Undefined

Soil Behaviour Type (SBT) - Robertson et al. 1986 Sensitive fine-grained

Clay - organic soil

& silty clay

Clays: clay to silty clay

Silt mixtures: clayey silt

Sand mixtures: silty sand to sandy silt Sands: clean sands to silty sands

7 Dense sand to gravelly

3,5	sand
,	Stiff sand to claye sand
•	sand

9 Stiff fine-grained

Notes	Q,	Limitations
Notes	α	Limitations

Data shown on this report has been assessed to provide a basic interpretation in terms of Soil Behaviour Type (SBT) and various geotechnical soil and design parameters using methods published in P. K. Robertson and K.L. Cabal, Guide to Cone Penetration Testing for Geotechnical Engineering. The interpretations are presented only as a guide for geotechnical use, and should be carefully reviewed by the user. No warranty is provided as to the correctness or the applicability of any of the geotechnical soil and design parameters shown and does not assume any liability for any use of the results in any design or review. The user should be fully aware of the techniques and limitations of any method used to derive data shown in this report.

-0.0116

Predrill: 1.60m

Collapse: 2.05m

Water Level: -

Remarks		
	Sheet 1 of 1	

Generated with Core-GS by Geroc

TEST DETAIL

PointID: CPTu301 Sounding: Operator: B. Wilson Date: 6/5/2022 Termination Cone Type: I-CFXYP20-10 - Compression Predrill: 1.70m Cone Reference: 100992 Water Level: -Target Depth ✓ Cone Area Ratio: 0.75 Collapse: 2.2m **Effective Refusal** Zero load outputs (MPa) Before test After test Tip Tip Resistance 0.9252 0.8986 Gauge **Local Friction** 0.0266 0.0265 Inclinometer Pore Pressure 0.0146 0.0130 Other PointID: CPTu302 Sounding: Operator: B. Wilson Date: 6/5/2022 Termination Cone Type: I-CFXYP20-10 - Compression Predrill: 1.70m Target Depth 🗸 Cone Reference: 100992 Water Level: 2.10m Cone Area Ratio: 0.75 Collapse: 2.2m **Effective Refusal** Zero load outputs (MPa) Before test After test Tip **Tip Resistance** 0.9258 0.9206 Gauge **Local Friction** 0.0286 0.0272 Inclinometer 0.0157 Pore Pressure 0.0180 Other PointID: CPTu303 Sounding: 3 Operator: B. Wilson Date: 6/5/2022 Termination Predrill: 1.60m Cone Type: I-CFXYP20-10 - Compression Water Level: -Target Depth 🗸 Cone Reference: 111007 Collapse: 2.05m Cone Area Ratio: 0.75 **Effective Refusal** Zero load outputs (MPa) Before test After test Tip 0.1308 **Tip Resistance** 0.1578 Gauge **Local Friction** 0.0049 0.0047 Inclinometer Pore Pressure -0.0074 -0.0116 Other

CPT CALIBRATION AND TECHNICAL NOTES

These notes describe the technical specifications and associated calibration references pertaining to the following cone types:

- I-CFXY-10 measuring cone resistance, sleeve friction and inclination (standard cone, 10cm³);
- I-CFXY-15 measuring cone resistance, sleeve friction and inclination (standard cone, 15cm²);
- I-CFXYP20-10 measuring cone resistance, sleeve friction, inclination and pore pressure (piezocone, 10cm²);
- I-CFXYP100-10 measuring cone resistance, sleeve friction, inclination and high range pore pressure (piezocone, 10cm²);
- I-C2xFXYP100-10 measuring cone resistance, high range sleeve friction, inclination and high range pore pressure (piezocone, 10cm²);
- I-C5F0p15XYP20-10 measuring sensitive cone resistance, sleeve friction, inclination and pore pressure (piezocone, 10cm²).
- I-CFXYP20-15 measuring cone resistance, sleeve friction, inclination and pore pressure (piezocone, 15cm²);

Dimensions

Dimensional specifications for all cone types are detailed below. All tolerances are routinely checked prior to testing and measurements taken

are electronically recorded. All A.P. van den Berg Machinefabriek tel.: +31 (0)513-631355 info@apvandenberg.com	DEVIATION of Straightness + MINIMUM Dimensio tip, friction jacket, cone	ons	Standards: EN ISO 22476-1 APB-standard			
Info@apvandenberg.com Type of cone: ALLOWABLE SIZE VARIATION Diameter of tip: Diameter of centering ring CFP Diameter of friction jacket: Height dimension of tip edge: PRODUCTION DIMENSIONS Tip: Jacket (C-cone): Friction jacket (CF-cone): Tip for used cone: MINIMUM DIMENSIONS Minimum diameter jacket (C-cone): Winimum diameter friction jacket (CF-cone): Use "used cone"-tip when friction jacket diameter: Minimum diameter of cone adaptor: Maximum deviation of straightness:	tip, friction jacket, cone at line in the second sector of the sector o		4	Icone 15 cm ² $43,2 \le d_1 \le 44,1$ $43,2 \le d_1 \le 44,1$ $d_1 \le d_2 < d_1 + 0,43$ $9 \le h_e \le 12$ $d_1 = 43,8 \stackrel{+0,2}{0}$ $d_2 = 43,7 \stackrel{+0,2}{0}$ $d_2 = 44,0 \stackrel{+0,1}{0}$ $d_1 = 43,5 \stackrel{+0,1}{0}$ $d_2 = 43,0 \text{ (APB standard)}$ $d_2 = 43,2$ $d_2 \le 43,7$ $d = 43,8$ 1 mm on a length of 1000 mm (max. oscillation: 2.0 mm)	482	3.5 45 45 47 47 47 47
Tip and Local Friction se	nsor displacement		# DE			d1

The different distances of the sensors are compensated depending on the cone types:

- 10cm² cones: 80mm
- 15cm² cones: 100mm

Cone area ratio

 $\alpha = B/A = 0.75$

 $\beta = 1 - B / A = 0.25$

CPT CALIBRATION AND TECHNICAL NOTES

Calibration

Each cone has a unique identification number that is electronically recorded and reported for each CPT test. The identification number enables the operator to compare 'zero-load offsets' to manufacturer calibrated zero-load offsets.

The recommended maximum zero-load offset for each sensor is determined as \pm 5% of the nominal measuring range.

In addition to maximum zero-load offsets, the difference in zero load offset before and after the test is limited as \pm 2% of the maximum measuring range. See table below:

	Tip (Friction (MPa)			Pore Pressure (MPa)		
Maximum Measuring Range:	150	15 *	1.50	0.3 *	3 **	3	15 ***
Nominal Measuring Range:	75	7.5 *	1.00	0.15 *	1 **	2	10 ***
Max. 'zero-load offset':	7.5	0.75 *	0.10	0.015 *	0.1 **	0.2	1 ***
Max 'before and after test':	3	0.3 *	0.03	0.006 *	0.06 **	0.06	0.3 ***

^{*} I-C5F0p15XYP20-10 ("sensitive")

Note: The zero offsets are electronically recorded and reported for each test in the same units as that of each sensor.

^{**} I-C2xFXYP100-10 (high range friction and pore water pressure sensors)

^{***} I-CFXYP100-10 (high range pore water pressure sensor)

Calibration Certificate

1.1 General

Probe number: Probe type:

Description: Part number:

Certificate number:

Manufacturer Calibration lab.:

Location of calibration:

Client

100992 I-CFXYP20-10

Tip 75 MPa Sleeve 1.00 MPa Inclinometer 20° Pore 2MPa

100992-2

A.P. van den Berg, Heerenveen (NL)

A.P. van den Berg Ingenieursburo, IJzerweg 4, 8445 PK, Heerenveen (NL)

RvA accredited laboratory according to ISO/IEC 17025:2017

Heerenveen (NL) McMillan Drilling Ltd 120 High Street

SOUTHBRIDGE, CANTERBURY

New Zealand

1.2 Calibration equipment

Reference measuring equipment:

DAQ MX238B 0177FD DAQ MX440B 0182F3 Loadcell 100kN H54435 Loadcell 20kN D16200 Sensor 20 Bar 240310140

ACS-080-SC00-HE2-PM 12/17 2321909 Temperature logger: 620-2326 SN:170800101 March 2021 (HBM: 92591) March 2021 (HBM: 92778)

August 2020 (HBM: 86959 2020-07) July 2020 (HBM: 86871 2020-07) Sept 2020 (ZMK: 02-1194 2020-09)

April 2021 (Trescal: 2103-24007)

March 2021 (AVANTOR 219001540)

1.3 Laboratory conditions:

Ambient temperature:

23.8 ±2°C

1.4 Measurement uncertainty

The expanded combined uncertainty (k=2) of the sensor at laboratory conditions was analysed according to ISO/IEC Guide 98-3:2008 and is based on the standard uncertainty of the measurement multiplied by a coverage factor k, such that the coverage probability corresponds to approximately 95%. The results of the measurement uncertainty analysis of the different parameters are as listed below:

Cone resistance Sleeve friction Pore Pressure 2 MPa sensor

5,6 + 0,165% 0,17 + 0,105% 4,16 + 0,037%

(kPa) (kPa) (kPa)

0,42

(degrees)

1.5 Standard and method of calibration

EN ISO 22476-1 2012 Class 2

1.6 Results

Inclination

The probe complies with the requirements of the above-mentioned standard and indicated calibration class. The calibrated sensors comply if the measured deviations over the nominal measuring range are within the accuracy limits of the standard (decision rule). The deviations and standard limits are shown in graphs in the Calibration Report.

Calibrated by: Calibration Date: Signature:

QA Manager: Date: Signature

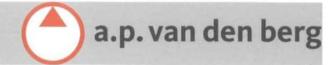
D.Bisschops

23 November 2021

N.R.E. de Jong 23 November 2021

Expiration date according to EN ISO 22476-1:

24 May 2022


The calibration results only relate to the probe identified in this certificate. This new calibration certificate replaces all previously issued certificates for this probe. The calibration certificate documents the traceability to national and international standards, which realize the units of measurement according to the International System of Units (SI). This calibration certificate may not be reproduced other than in full and except with permission of the issuing laboratory. Calibration certificates without signature are not valid.

Certificate version 1.20

Page 1/6

Calibration Certificate

1.1 General

Probe number Probe type:

Description: Part number:

Part number: Certificate number: Manufacturer:

Calibration lab.:

Calibration lab...

Location of calibration: Client: 111007 I-CFXYP20-10

Tip 75 MPa Sleeve 1.00 MPa Inclinometer 20° Pore 2MPa

0100277B 111007-5

A.P. van den Berg, Heerenveen (NL)

A.P. van den Berg Ingenieursburo, IJzerweg 4, 8445 PK, Heerenveen (NL)

RvA accredited laboratory according to ISO/IEC 17025:2017 Heerenveen (NL)

McMillan Drilling Ltd 120 High Street

SOUTHBRIDGE, CANTERBURY

New Zealand

1.2 Calibration equipment

Reference measuring equipment:

DAQ MX238B 00E80F DAQ MX440B 00FCAB Loadcell 100kN 201330120 Loadcell 20kN 210230193 Sensor 20 Bar 240310135

ACS-080-SC00-HP2-PM 02/18 2610439 Temperature logger: 620-2326 SN; 170800285 Aug 2021 (HBM: 96998 2021-08) Aug 2021 (HBM: 97005 2021-08)

August 2021 (HBM: 96532 2021-08) Aug 2021 (HBM: 96418 2021-08) Sept 2020 (ZKM: 02-1193 2020-09) April 2021 (Trescal: 2103-24005) June 2021 (AVANTOR: 219003177)

1.3 Laboratory conditions:

Ambient temperature:

22.5 ±2°C

1.4 Measurement uncertainty

The expanded combined uncertainty (k=2) of the sensor at laboratory conditions was analysed according to ISO/IEC Guide 98-3:2008 and is based on the standard uncertainty of the measurement multiplied by a coverage factor k, such that the coverage probability corresponds to approximately 95%. The results of the measurement uncertainty analysis of the different parameters are as listed below:

Cone resistance Sleeve friction Pore Pressure 2 MPa sensor

0,17 + 0,105% 4,16 + 0.037% 0,42 (kPa) (kPa)

(kPa) (degrees)

1.5 Standard and method of calibration

EN ISO 22476-1 2012 Class 2

1.6 Results

Inclination

The probe complies with the requirements of the above-mentioned standard and indicated calibration class. The calibrated sensors comply if the measured deviations over the nominal measuring range are within the accuracy limits of the standard (decision rule). The deviations and standard limits are shown in graphs in the Calibration Report.

Calibrated by: Calibration Date:

Signature:

QA Manager: Date: Signature: D. Bisschops

5,6 + 0,165%

22 February 2022

N.R.E. de long 22 February 2022

Expiration date according to EN ISO 22476-1;

23 August 2022

1.7 Remarks

The calibration results only relate to the probe identified in this certificate. This new calibration certificate replaces all previously issued certificates for this probe. The calibration certificate documents the traceability to national and international standards, which realize the units of measurement according to the International System of Units (SI). This calibration certificate may not be reproduced other than in full and except with permission of the issuing laboratory. Calibration certificates without signature are not valid.

Certificate version 1.20

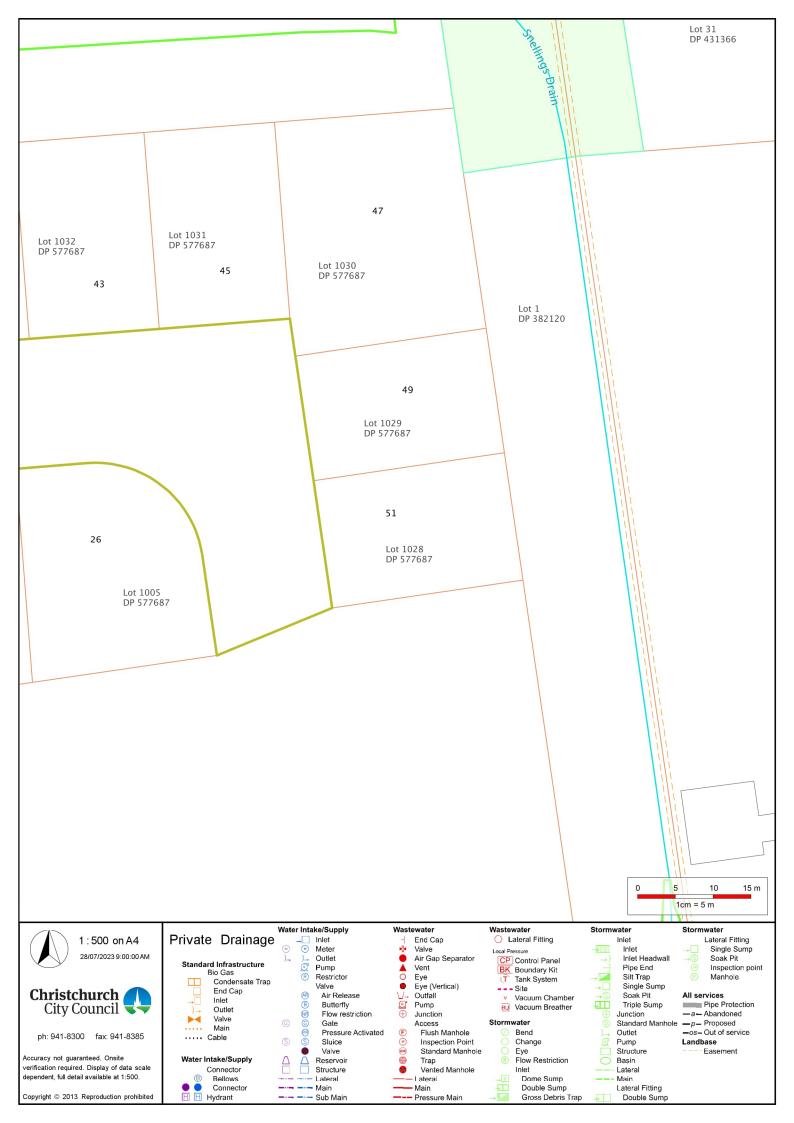
Certificate number: 111007-5

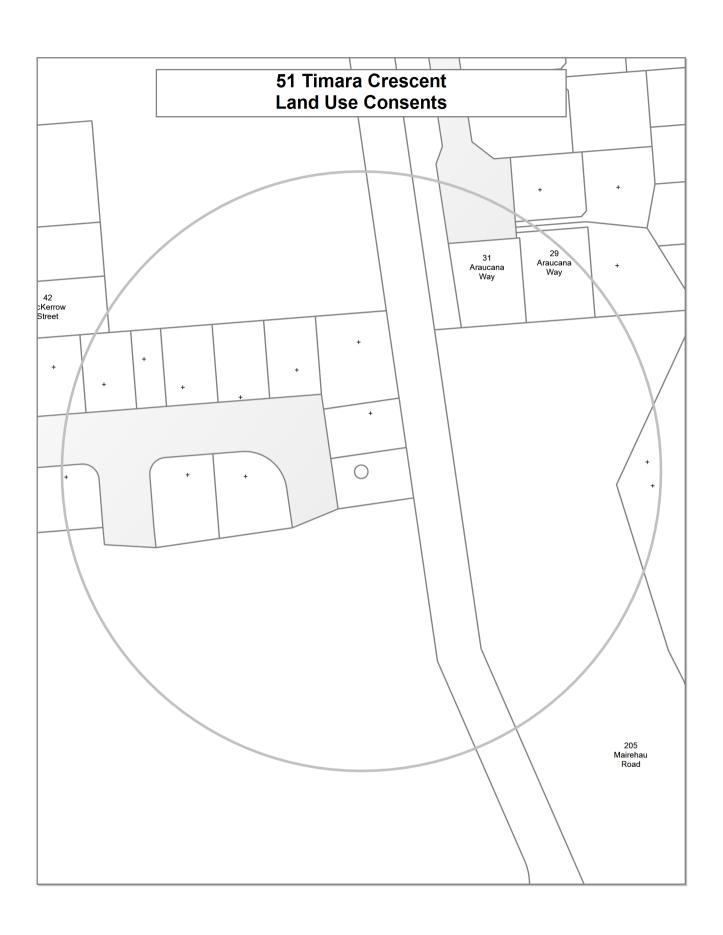
Page 1/6

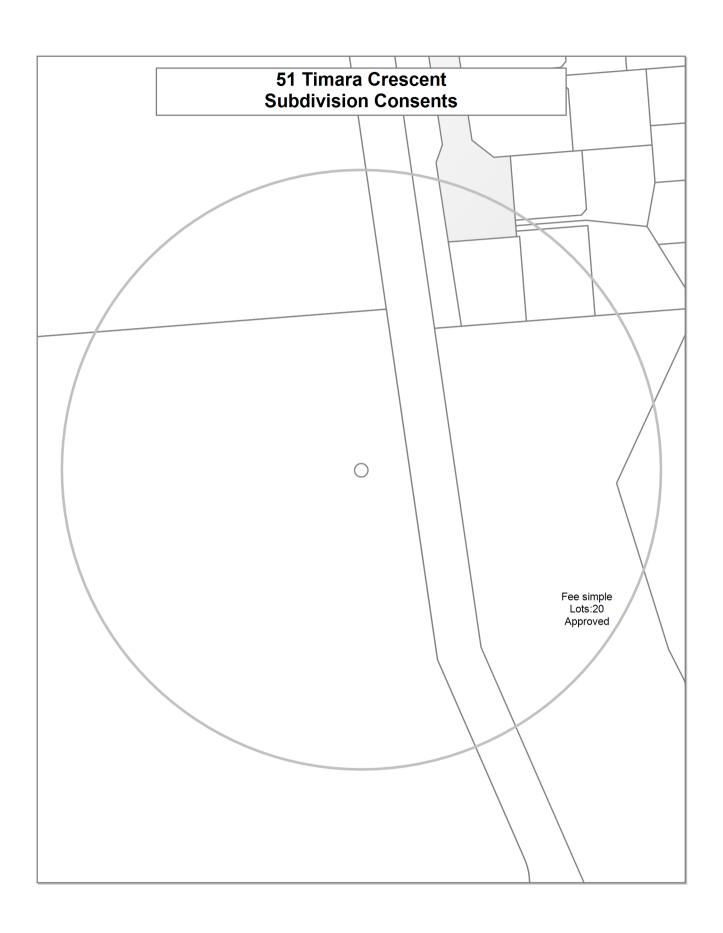
Document prepared by

Aurecon New Zealand Limited

Level 2, Iwikau Building 93 Cambridge Terrace Christchurch 8013 New Zealand


T +64 3 366 0821
F +64 3 379 6955
E christchurch@aurecongroup.com
Waurecongroup.com




Bringing ideas

Aurecon offices are located in:

Angola, Australia, Botswana, China, Ghana, Hong Kong, Indonesia, Kenya, Lesotho, Macau, Mozambique, Namibia, New Zealand, Nigeria, Philippines, Qatar, Singapore, South Africa, Swaziland, Tanzania, Thailand, Uganda, United Arab Emirates, Vietnam.

Land Use Resource Consents within 100 metres of 51 Timara Crescent

Note:This list does not include subdivision Consents and Certificates of Compliance issued under the Resource Management Act.

155R Mairehau Road

RMA/2020/170

Earthworks within setback from Snellings Drain associated with the installation of new stormwater outfall pipes, culvert and removal of existing bridge

Cancelled

Applied 30/01/2020

Cancelled - fee not paid 04/03/2020

RMA/2021/1436

Earthworks within 5m setback of a network waterway associated with the naturalisation of Snellings Drain

Processing complete

Applied 19/05/2021

Decision issued 25/06/2021

Granted 25/06/2021

205 Mairehau Road

RMA/2022/1180

Subdivision - Fee simple - 20 Lots with earthworks

Consent issued

Applied 14/04/2022

Decision issued 15/02/2023

Granted 14/02/2023

25 Cameo Grove

RMA/2017/2545

To construct buildings on Lots 291-294, 312-318 and 377-389 (Stage 2)up to 4 m from the Mairehau Road boundary and with a reduced landscaping strip of 2m in width

Processing complete

Applied 17/10/2017

Decision issued 17/01/2018

Granted 17/01/2018

29 Araucana Way

RMA/2013/187

Proposed new dwelling with attached garage - Historical Reference RMA92021774

Processing complete

Applied 08/02/2013

Decision issued 04/03/2013

Granted 01/03/2013

31 Araucana Way

RMA/2018/3127

Construct dwelling with attached garage

Processing complete

Applied 20/12/2018

Decision issued 30/01/2019

Granted 30/01/2019

42 McKerrow Street

RMA/2017/2545

To construct buildings on Lots 291-294, 312-318 and 377-389 (Stage 2)up to 4 m from the Mairehau Road boundary and with a reduced landscaping strip of 2m in width

Processing complete

Applied 17/10/2017

Decision issued 17/01/2018

Granted 17/01/2018

8R Araucana Way

RMA/2021/1436

Earthworks within 5m setback of a network waterway associated with the naturalisation of Snellings Drain

Processing complete

Applied 19/05/2021

Decision issued 25/06/2021

Granted 25/06/2021

Data Quality Statement

Land Use Consents

All resource consents are shown for sites that have been labelled with an address. For sites that have been labelled with a cross (+) no resource consents have been found. Sites that have no label have not been checked for resource consents. This will be particularly noticeable on the margins of the search radius. If there are such sites and you would like them included in the check, please ask for the LIM spatial query to be rerun accordingly. This will be done free of charge although there may be a short delay. Resource consents which are on land occupied by roads, railways or rivers are not, and currently cannot be displayed, either on the map or in the list. Resource consents that relate to land that has since been subdivided, will be shown in the list, but not on the map. They will be under the address of the land as it was at the time the resource consent was applied for. Resource consents that are listed as Non-notified and are current, may in fact be notified resource consents that have not yet been through the notification process. If in doubt. Please phone (03)941 8999.

The term "resource consents" in this context means land use consents. Subdivision consents and certificates of compliance are excluded.

Subdivision Consents

All subdivision consents are shown for the sites that have been labelled with consent details. For Sites that have been labelled with a cross (+) no records have been found. Sites that have no label have not been checked for subdivision consents. This will be particularly noticeable on the margins of the search radius. If there are such sites and you would like them included in the check, please ask for the LIM spatial query to be rerun accordingly. This will be done free of charge although there may be a short delay.

The term "subdivision consents" in this context means a resource consent application to subdivide land. Non subdivision land use resource consents and certificates of compliance are excluded.

This report will only record those subdivision applications which have not been completed i.e once a subdivision has been given effect to and the new lots/properties have been established the application which created those lots will not be shown

All subdivision consent information is contained on the map and no separate list is supplied